sparsereg 0.10.0
pip install sparsereg
Released:
Modern sparse linear regression
Navigation
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: GNU Lesser General Public License v3 (LGPLv3) (MIT)
- Author: Markus Quade
- Requires: Python >=3.6
Classifiers
- Development Status
- Intended Audience
- License
- Programming Language
- Topic
Project description
sparsereg is a collection of modern sparse (regularized) regression algorithms.
Installation
pip install sparsereg
Citation
If you use sparsereg please consider a citation:
@misc{markus_quade_sparsereg, author = {Markus Quade}, title = {sparsereg - collection of modern sparse regression algorithms}, month = feb, year = 2018, doi = {10.5281/zenodo.1173754}, url = {https://github.com/ohjeah/sparsereg} }
Implemented algorithms
Mcconaghy, T. (2011). FFX: Fast, Scalable, Deterministic Symbolic Regression Technology. Genetic Programming Theory and Practice IX, 235-260. DOI: 10.1007/978-1-4614-1770-5_13
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. “Discovering governing equations from data by sparse identification of nonlinear dynamical systems.” Proceedings of the National Academy of Sciences 113.15 (2016): 3932-3937. DOI: 10.1073/pnas.1517384113
Bouchard, Kristofer E. “Bootstrapped Adaptive Threshold Selection for Statistical Model Selection and Estimation.” arXiv preprint arXiv:1505.03511 (2015).
Ignacio Arnaldo, Una-May O’Reilly, and Kalyan Veeramachaneni. “Building Predictive Models via Feature Synthesis.” In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO ’15), Sara Silva (Ed.). ACM, New York, NY, USA, 983-990. DOI: 10.1145/2739480.2754693
Project details
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: GNU Lesser General Public License v3 (LGPLv3) (MIT)
- Author: Markus Quade
- Requires: Python >=3.6
Classifiers
- Development Status
- Intended Audience
- License
- Programming Language
- Topic
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sparsereg-0.10.0.tar.gz
.
File metadata
- Download URL: sparsereg-0.10.0.tar.gz
- Upload date:
- Size: 36.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e569d53b6980e6002875337e2053d6e8a918ddac4f85aeb2cfde4b7090c5238f |
|
MD5 | 528c1be45a720917a9b4afb197fe46af |
|
BLAKE2b-256 | 9ab7996bcd26e2ce45450d5988185011e0e16c9da8dd3f6691d14998d5a7021f |
File details
Details for the file sparsereg-0.10.0-py3-none-any.whl
.
File metadata
- Download URL: sparsereg-0.10.0-py3-none-any.whl
- Upload date:
- Size: 25.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aeb376ffdcd876fddd14ef4aa0a17d815101b51d404d9c1781607dd8e2cc28cf |
|
MD5 | 1c39cea7a94f8c4ed1aff158617d0342 |
|
BLAKE2b-256 | 12f5c276a4f43d4c6901cfa051ff2e2d357ddc2a65796f42438092225c334401 |