Skip to main content

Approximate any single cell data set, saving >99% of memory and runtime.

Project description

PyPI version

scquill

Approximate any single cell data set, saving >99% of memory and runtime.

It's pronounced /ˈskwɪɹl̩//, like the animal.

Approximating a single cell data set

import scquill

q = scquill.Compressor(
    filename='myscdata.h5ad',
    output_filename='myapprox.h5',
    celltype_column="cell_annotation",
)

q()

Exploring an approximation

To load an approximation:

import scquill

app = scquill.Approximation(
    filename='myapprox.h5',
)

To show a dot plot:

scquill.pl.dotplot(app, ['gene1', 'gene2', 'gene3'])

To show a neighborhood plot:

scquill.pl.neighborhoodplot(app, ['gene1', 'gene2', 'gene3'])

To show embeddings of cell neighborhoods, similar to single-cell UMAPs:

scquill.pl.embedding(app, ['gene1', 'gene2', 'gene3'])

MORE TO COME

Authors

Fabio Zanini @fabilab

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page