Skip to main content

Graphical model analysis toolbox.

Project description

PGM

Build Status Documentation Status PyPI version License: MIT

Probabilistic graphs: Representation, Learning, and Inference

Features

  • Representation
    • Bayesian Network Representation
    • Linked List BN Representation
    • Linked List MN Representation
    • Conditional Estimation
    • Marginal Estimation
    • Joint Estimation
  • Inference
    • Metropolis-Hastings algorithm
    • Gibbs Sampling on 2d grid
    • Generalized Gibbs Sampling
    • Message Parsing and BP
    • Loopy BP
    • VE
    • Causal Interventions
  • search methods
    • DFS
    • BFS
  • Additional
    • Finding Active Trails
    • Max clique size and clique node
    • Calculate tree-width
  • Learning
  • Miscellaneous
    • Random BN and MN generation

Installation

pip install ppgm

Contact

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page