Skip to main content

An eXplainable AI package for tabular data.

Project description

Effector

PyPI version Execute Tests Publish Documentation PyPI Downloads Code style: black


effector an eXplainable AI package for tabular data. It:


📖 Documentation | 🔍 Intro to global and regional effects | 🔧 API | 🏗 Examples


Installation

Effector requires Python 3.10+:

pip install effector

Dependencies: numpy, scipy, matplotlib, tqdm, shap.


Quickstart

Train an ML model

import effector
import keras
import numpy as np
import tensorflow as tf

np.random.seed(42)
tf.random.set_seed(42)

# Load dataset
bike_sharing = effector.datasets.BikeSharing(pcg_train=0.8)
X_train, Y_train = bike_sharing.x_train, bike_sharing.y_train
X_test, Y_test = bike_sharing.x_test, bike_sharing.y_test

# Define and train a neural network
model = keras.Sequential([
    keras.layers.Dense(1024, activation="relu"),
    keras.layers.Dense(512, activation="relu"),
    keras.layers.Dense(256, activation="relu"),
    keras.layers.Dense(1)
])
model.compile(optimizer="adam", loss="mse", metrics=["mae", keras.metrics.RootMeanSquaredError()])
model.fit(X_train, Y_train, batch_size=512, epochs=20, verbose=1)
model.evaluate(X_test, Y_test, verbose=1)

Wrap it in a callable

def predict(x):
    return model(x).numpy().squeeze()

Explain it with global effect plots

# Initialize the Partial Dependence Plot (PDP) object
pdp = effector.PDP(
    X_test,  # Use the test set as background data
    predict,  # Prediction function
    feature_names=bike_sharing.feature_names,  # (optional) Feature names
    target_name=bike_sharing.target_name  # (optional) Target variable name
)

# Plot the effect of a feature
pdp.plot(
    feature=3,  # Select the 3rd feature (feature: hour)
    nof_ice=200,  # (optional) Number of Individual Conditional Expectation (ICE) curves to plot
    scale_x={"mean": bike_sharing.x_test_mu[3], "std": bike_sharing.x_test_std[3]},  # (optional) Scale x-axis
    scale_y={"mean": bike_sharing.y_test_mu, "std": bike_sharing.y_test_std},  # (optional) Scale y-axis
    centering=True,  # (optional) Center PDP and ICE curves
    show_avg_output=True,  # (optional) Display the average prediction
    y_limits=[-200, 1000]  # (optional) Set y-axis limits
)

Feature effect plot

Explain it with regional effect plots

# Initialize the Regional Partial Dependence Plot (RegionalPDP)
r_pdp = effector.RegionalPDP(
    X_test,  # Test set data
    predict,  # Prediction function
    feature_names=bike_sharing.feature_names,  # Feature names
    target_name=bike_sharing.target_name  # Target variable name
)

# Summarize the subregions of the 3rd feature (temperature)
r_pdp.summary(
    features=3,  # Select the 3rd feature for the summary
    scale_x_list=[  # scale each feature with mean and std
        {"mean": bike_sharing.x_test_mu[i], "std": bike_sharing.x_test_std[i]}
        for i in range(X_test.shape[1])
    ]
)
Feature 3 - Full partition tree:
🌳 Full Tree Structure:
───────────────────────
hr 🔹 [id: 0 | heter: 0.43 | inst: 3476 | w: 1.00]
    workingday = 0.00 🔹 [id: 1 | heter: 0.36 | inst: 1129 | w: 0.32]
        temp ≤ 6.50 🔹 [id: 3 | heter: 0.17 | inst: 568 | w: 0.16]
        temp > 6.50 🔹 [id: 4 | heter: 0.21 | inst: 561 | w: 0.16]
    workingday ≠ 0.00 🔹 [id: 2 | heter: 0.28 | inst: 2347 | w: 0.68]
        temp ≤ 6.50 🔹 [id: 5 | heter: 0.19 | inst: 953 | w: 0.27]
        temp > 6.50 🔹 [id: 6 | heter: 0.20 | inst: 1394 | w: 0.40]
--------------------------------------------------
Feature 3 - Statistics per tree level:
🌳 Tree Summary:
─────────────────
Level 0🔹heter: 0.43
    Level 1🔹heter: 0.31 | 🔻0.12 (28.15%)
        Level 2🔹heter: 0.19 | 🔻0.11 (37.10%)

The summary of feature hr (hour) says that its effect on the output is highly dependent on the value of features:

  • workingday, wheteher it is a workingday or not
  • temp, what is the temperature the specific hour

Let's see how the effect changes on these subregions!


Is it workingday or not?

# Plot regional effects after the first-level split (workingday vs non-workingday)
for node_idx in [1, 2]:  # Iterate over the nodes of the first-level split
    r_pdp.plot(
        feature=3,  # Feature 3 (temperature)
        node_idx=node_idx,  # Node index (1: workingday, 2: non-workingday)
        nof_ice=200,  # Number of ICE curves
        scale_x_list=[  # Scale features by mean and std
            {"mean": bike_sharing.x_test_mu[i], "std": bike_sharing.x_test_std[i]}
            for i in range(X_test.shape[1])
        ],
        scale_y={"mean": bike_sharing.y_test_mu, "std": bike_sharing.y_test_std},  # Scale the target
        y_limits=[-200, 1000]  # Set y-axis limits
    )
Feature effect plot Feature effect plot

Is it hot or cold?

# Plot regional effects after second-level splits (workingday vs non-workingday and hot vs cold temperature)
for node_idx in [3, 4, 5, 6]:  # Iterate over the nodes of the second-level splits
    r_pdp.plot(
        feature=3,  # Feature 3 (temperature)
        node_idx=node_idx,  # Node index (hot/cold temperature and workingday/non-workingday)
        nof_ice=200,  # Number of ICE curves
        scale_x_list=[  # Scale features by mean and std
            {"mean": bike_sharing.x_test_mu[i], "std": bike_sharing.x_test_std[i]}
            for i in range(X_test.shape[1])
        ],
        scale_y={"mean": bike_sharing.y_test_mu, "std": bike_sharing.y_test_std},  # Scale target
        y_limits=[-200, 1000]  # Set y-axis limits
    )
Feature effect plot Feature effect plot
Feature effect plot Feature effect plot

Supported Methods

effector implements global and regional effect methods:

Method Global Effect Regional Effect Reference ML model Speed
PDP PDP RegionalPDP PDP any Fast for a small dataset
d-PDP DerPDP RegionalDerPDP d-PDP differentiable Fast for a small dataset
ALE ALE RegionalALE ALE any Fast
RHALE RHALE RegionalRHALE RHALE differentiable Very fast
SHAP-DP ShapDP RegionalShapDP SHAP any Fast for a small dataset and a light ML model

Method Selection Guide

From the runtime persepective there are three criterias:

  • is the dataset small (N<10K) or large (N>10K instances) ?
  • is the ML model light (runtime < 0.1s) or heavy (runtime > 0.1s) ?
  • is the ML model differentiable or non-differentiable ?

Trust us and follow this guide:

  • light + small + differentiable = any([PDP, RHALE, ShapDP, ALE, DerPDP])
  • light + small + non-differentiable: [PDP, ALE, ShapDP]
  • heavy + small + differentiable = any([PDP, RHALE, ALE, DerPDP])
  • heavy + small + non differentiable = any([PDP, ALE])
  • big + not differentiable = ALE
  • big + differentiable = RHALE

Citation

If you use effector, please cite it:

@misc{gkolemis2024effector,
  title={effector: A Python package for regional explanations},
  author={Vasilis Gkolemis et al.},
  year={2024},
  eprint={2404.02629},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}

References


License

effector is released under the MIT License.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page