Skip to main content

Point Spread Function calculations for fluorescence microscopy

Project description

Psf is a Python library to calculate Point Spread Functions (PSF) for fluorescence microscopy.

The psf library is no longer actively developed.

Author:

Christoph Gohlke

License:

BSD 3-Clause

Version:

2025.1.1

Quickstart

Install the psf package and all dependencies from the Python Package Index:

python -m pip install -U "psf[all]"

See Examples for using the programming interface.

Source code and support are available on GitHub.

Requirements

This revision was tested with the following requirements and dependencies (other versions may work):

Revisions

2025.1.1

  • Improve type hints.

  • Drop support for Python 3.9, support Python 3.13.

2024.5.24

  • Fix docstring examples not correctly rendered on GitHub.

2024.4.24

  • Support NumPy 2.

2024.1.6

  • Change PSF.TYPES from dict to set (breaking).

2023.4.26

  • Use enums.

  • Derive Dimensions from UserDict.

  • Add type hints.

  • Convert to Google style docstrings.

  • Drop support for Python 3.8 and numpy < 1.21 (NEP29).

2022.9.26

  • Fix setup.py.

2022.9.12

  • Drop support for Python 3.7 (NEP 29).

  • Update metadata.

2021.6.6

  • Drop support for Python 3.6 (NEP 29).

2020.1.1

  • Drop support for Python 2.7 and 3.5.

  • Update copyright.

2019.10.14

  • Support Python 3.8.

2019.4.22

  • Fix setup requirements.

  • Fix compiler warning.

References

  1. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. B Richards and E Wolf. Proc R Soc Lond A, 253 (1274), 358-379, 1959.

  2. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. S T Hess, W W Webb. Biophys J (83) 2300-17, 2002.

  3. Electromagnetic description of image formation in confocal fluorescence microscopy. T D Viser, S H Wiersma. J Opt Soc Am A (11) 599-608, 1994.

  4. Photon counting histogram: one-photon excitation. B Huang, T D Perroud, R N Zare. Chem Phys Chem (5), 1523-31, 2004. Supporting information: Calculation of the observation volume profile.

  5. Gaussian approximations of fluorescence microscope point-spread function models. B Zhang, J Zerubia, J C Olivo-Marin. Appl. Optics (46) 1819-29, 2007.

  6. The SVI-wiki on 3D microscopy, deconvolution, visualization and analysis. https://svi.nl/NyquistRate

Examples

>>> import psf
>>> args = dict(
...     shape=(32, 32),
...     dims=(4, 4),
...     ex_wavelen=488,
...     em_wavelen=520,
...     num_aperture=1.2,
...     refr_index=1.333,
...     pinhole_radius=0.55,
...     pinhole_shape='round',
... )
>>> obsvol = psf.PSF(psf.GAUSSIAN | psf.CONFOCAL, **args)
>>> obsvol.sigma.ou
(2.588..., 1.370...)
>>> obsvol = psf.PSF(psf.ISOTROPIC | psf.CONFOCAL, **args)
>>> print(obsvol, end='')
PSF
 ISOTROPIC|CONFOCAL
 shape: (32, 32) pixel
 dimensions: (4.00, 4.00) um, (55.64, 61.80) ou, (8.06, 8.06) au
 excitation wavelength: 488.0 nm
 emission wavelength: 520.0 nm
 numeric aperture: 1.20
 refractive index: 1.33
 half cone angle: 64.19 deg
 magnification: 1.00
 underfilling: 1.00
 pinhole radius: 0.550 um, 8.498 ou, 1.1086 au, 4.40 px
 computing time: ... ms
>>> obsvol[0, :3]
array([1.     , 0.51071, 0.04397])
>>> # write the image plane to file
>>> obsvol.slice(0).tofile('_test_slice.bin')
>>> # write a full 3D PSF volume to file
>>> obsvol.volume().tofile('_test_volume.bin')

Refer to psf_example.py in the source distribution for more examples.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page